Magnetic field effects of double-walled carbon nanotubes
نویسندگان
چکیده
منابع مشابه
Magnetic Field Effects of Double-Walled Carbon Nanotubes
A theoretical discussion of electronic and transport properties of a particular family of double-wall carbon nanotubes, named commensurate structures of the armchair type (n,n)@(2n,2n) is addressed. A single π-band tight binding hamiltonian is considered and the magnetic field is theoretically described by following the Peierls approximation into the hopping energies. Our emphasis is put on inv...
متن کاملBundles of identical double-walled carbon nanotubes.
In a sample produced by catalytic chemical vapor deposition (CCVD), the structure of the carbon nanotubes (diameter and helicity) which governs their electronic properties, is determined by electron diffraction. We found that most of the smallest bundles are constituted of identical double-walled carbon nanotubes.
متن کاملBuckling of Double-walled Carbon Nanotubes
This paper is concerned with the buckling of double-walled carbon nanotubes (DWCNTs) under axial load. The DWCNTs are modelled as two cylindrical shells, one shell nested in the other and Winkler springs are introduced to connect them in order to simulate the van der Waals forces between the two nanotubes. By using the Donnell thin shell theory, we derive the governing equations for the bucklin...
متن کاملLongitudinal Magnetic Field Effect on Torsional Vibration of Carbon Nanotubes
Torsional dynamic analysis of carbon nanotubes under the effect of longitudinal magnetic field is carried out in the present study. Torque effect of an axial magnetic field on a carbon nanotube has been defined using Maxwell’s relation. Nonlocal governing equation and boundary conditions for carbon nanotubes are obtained by using Hamilton’s minimum energy principle. Eringen’s nonlocal stress gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Brazilian Journal of Physics
سال: 2006
ISSN: 0103-9733
DOI: 10.1590/s0103-97332006000600026